微粉制備
目前使用的ZrO 微粉,顆粒尺寸一般在1-88um之間。工業(yè)上生產微粉常用機械研磨法,原理如下:塊狀原料→粉碎(一般使用流化床氣流磨)→磁選→清洗→干燥→篩分→包裝。需要注意的是,在細磨階段要防止介質對原料的污染。
超細粉制備
超細粉末的粒徑一般為10—100nm之間, 由于具有一系列優(yōu)異的性質(如表面效應、小尺寸效應、量子效應、隧道效應等),目前已經成為高科技的前沿和重點。ZrO 超細粉末的制備方法很多,包括物理方法和濕化學方法,如化學共沉淀法、水熱法、氣相沉積法和氣相熱分解法等。
固相法
固相法是通過在研缽內研磨,使固相的氧氯化鋯分別與固相的氫氧化鈉或六次甲基四胺或氫氧化鈉和碳酸鋰的混合研磨物發(fā)生發(fā)應,生成納米氧化鋯粉體的前驅體-氫氧化鋯,然后中溫燒結制得納米二氧化鋯粉體。王煥英、宋秀芹等人用這種方法成功制得了粒徑約為10nm左右的超細ZrO。
此法的一個顯著特點是能在低溫下合成通常要求高溫加工才能制備的材料,但在球磨過程中易引入雜質,僅適于制備金屬材料。
化學氣相法
化學氣相法是讓一種或數種氣體通過熱、光、電、磁和化學等作用而發(fā)生熱分解、還原或其他反應,從氣相中析出納米粒子,此法適合制備金屬納米粉末以及金屬和非金屬的氧、氮、碳化物的納米粉末。
可分為:激光誘導化學氣相沉積法、等離子體誘導化學氣相沉積法和熱化學氣相沉積法三種方法。用顆粒大小為小為1 cm的球狀或板狀單晶ZrCl4做原料,通入氮氣、氧氣,于240℃~250℃下ZrCl4升華,加熱到600℃,可得0.04-0.08μm的四方晶型ZrO2超細粉末。
該法制備的納米顆粒純度高,分散性好,粒度分布窄;缺點是設備要求較高,產量相對較低,導致成本較高,不易實現(xiàn)工業(yè)化生產。
沉淀法
沉淀法是在包含一種或多種陽離子的可溶性鹽溶液中,加入沉淀劑使一種或多種陽離子同時沉淀,或在一定溫度下使溶液發(fā)生水解、形成不溶性的氫氧化物或鹽類從溶液中析出,然后將溶液中的陰離子洗去,最后經熱分解即得所需的氧化物粉末。它包括直接沉淀法、均勻沉淀法、共沉淀法和水解沉淀法等。河北師范大學的王煥英、宋秀芹等人,以 NH3·H2O和 ZrOCl·8HO為反應原液成功得到納米ZrO 粉體。
沉淀法的共同特點是:操作簡單,可以制得化學組成均勻性好的粉末,但易引入雜質,且需經高溫處理因而易引起團聚,工藝流程長。
金屬醇鹽法
金屬醇鹽法是利用一些金屬有機醇鹽能溶于有機試劑并遇水發(fā)生水解,生成氫氧化物或氧化物沉淀的特性,制備超細粉末。金屬醇鹽遇水后很容易分解成醇和氧化物或其水合物等沉淀,這些沉淀經過濾、干燥及焙燒等過程可制得納米粒子。
具體方法是:在鋯鹽的苯或異丙醇等有機溶劑中加水使鹽分解,然后洗凈生成的溶膠,干燥煅燒后得到納米ZrO 粒子。由于醇具有揮發(fā)性,醇鹽水解沉淀法最大的優(yōu)點是反應速度快,而且可以從所得物質的混合液中直接分離制備高純度納米粒子。所得粒子幾乎均是一次粒子,且粒子的大小和形狀均一。
因此該法制得的納米ZrO2適合用作高性能、高強、高韌的電子材料和結構材料。但是金屬醇鹽法需要用大量昂貴的有機金屬化合物,而且作為溶劑的有機物常是一些有毒的物質。所以此法耗資大,且容易造成污染問題。
溶膠—凝膠法
溶膠—凝膠法是60年代發(fā)展起來的一種制備玻璃、陶瓷等無機材料的新技術,目前已開始成為一門新的獨立學科。
其基本原理是:將金屬醇鹽或無機鹽經水解形成溶膠,然后使溶膠—凝膠化,再將凝膠干燥、煅燒,最后得到無機材料。它包括溶膠的制備,溶膠—凝膠轉化和凝膠的干燥三個過程。該法的最大優(yōu)點是反應溫度低,產物粒徑小,分布均勻,且易于實現(xiàn)高純化, 但由于絡合劑等有機試劑的引入,導致生產成本提高。
水熱法
水熱法是在特制的密閉反應容器(高壓釜)里,采用水溶液作為反應介質,通過對反應容器加熱,創(chuàng)造一個高溫高壓的反應環(huán)境,使通常難溶或不溶的物質重新溶解并且進行重結晶的方法。自1982年開始用水熱反應制備超細微粉以來,水熱法已引起國內外的重視,它是制備結晶良好、無團聚的超細陶瓷粉體的優(yōu)選方法之一。
水熱法是一種非常有前途的納米粉體制備方法,國外水熱法制備ZrO2粉體已經實現(xiàn)工業(yè)生產。但由于水熱法需要特殊的設備——高壓釜,且該設備易被腐蝕,所以在我國尚未實現(xiàn)工業(yè)化大生產。
微乳液法
微乳液是表面活性劑以膠束或單體分散在有機相中形成的均勻穩(wěn)定的溶液體系,在其中加入水或水溶液即可形成油包水膠束顆粒,通常由表面活性劑、助表面活性、油和水組成,是透明、各向異性的熱力學穩(wěn)定體系。在微水核內使金屬鹽發(fā)生沉淀,顆粒長大將受微水核自身結構及其內部金屬鹽容量的限制,同時顆粒表面吸附的表面活性劑分子或有機溶劑分子也將阻止顆粒的團聚進一步長大,用此法制備的粉體其大小可控制在幾至幾十納米之間。
此法制得的粉體粒子分散性好,粒度小且分布窄,但生產過程較復雜,成本也較高。
超臨界干燥法
超臨界干燥法利用物質在臨界溫度和壓力下,氣—液界面消失這一性質來消除粒子在干燥過程中因表面張力而產生的聚集現(xiàn)象,從而制備出團聚較輕或無團聚的納米粉體。
太原重型機械學院的梁麗萍、黨淑娥等人采用凝膠—超臨界流體干燥工藝合成不同CaO濃度的穩(wěn)定化ZrO2超微粉體。他們首先按照所要求的組成分別配置一定濃度的混合鹽溶液,再以氨水作為pH調節(jié)劑,調節(jié)體系的pH=10.1,獲得復合水凝膠,將水凝膠洗滌乙醇脫水得醇凝膠,醇凝膠于260℃,7.5MPa條件下進行超臨界流體干燥,得復合超微原粉,粉體經600℃,2h焙燒制得ZrO 納米粉。
該方法特點是:化學計量可以精確控制并省去了后續(xù)的煅燒,而且反應迅速,產品組成單一,但鹽類的分解會產生大量有害氣體,且耗能大易引起團聚。
共沸蒸餾法
在共沸蒸餾前首先找到一種夾帶劑使之與被夾帶組分水形成共沸物,在此共沸物中水的含量較大,以便有效的脫除水分,且夾帶劑與水的相互溶解度要小,利于夾帶劑的回收再利用。劉雪霆、許煜汾、范文元等人采用非均相共沸蒸餾法以正丁醇為夾帶劑對水合氫氧化鋯凝膠進行脫水,克服了粉體硬團聚的形成。經干燥、煅燒后成功的制成了氧化鋯納米粉末。
低溫燃燒合成法
低溫燃燒合成是相對于自蔓延高溫合成而提出的,它是一種通過對金屬鹽的飽和水溶液(氧化劑)和有機燃料(還原劑)加熱使其起火燃燒而得到泡沫狀疏松氧化物超細粉體的方法。北京積極大學的李汶霞、殷聲、王輝等人用水合硝酸鹽作為氧化劑、以尿素為燃料,根據推進化學計算原料的配比,進行了復相PSZ超細粉末的低溫燃燒合成。